

# Why, Where, & Type of Joint Restraint

2018 Iowa AWWA Annual Course

John Gade, P.E.

**FOX Engineering & Associates** 



# **Topics Covered**

Types of Thrust Restraint

Limitations

**Engineering Resources** 

**Stories** 



# How much thrust force is generated by a Water Pipeline?

12-inch Water End Cap - 150 psi



# 17,000 Pounds of Force!!





# **Types of Forces**

#### **Static Forces**

Internal Forces

### **Dynamic Forces**







### **Concrete Thrust Blocks**

Widely Used & Accepted

Poured in Place or Blocks

16" Pipe or Smaller

#### **Special Care**

- **Bond Breaker**







### **Concrete Thrust Blocks**

### Designed in Field

- Pipe Test Pressure
- Soil Type
- Undisturbed Soil
- Properly Formed
- Concrete Strength
- Cure Time







### **Concrete Thrust Blocks Design**

Iowa Statewide Urban Design& Specifications (SUDAS)

http://www.iowasudas.org/







TYPICAL PLAN









Extend thrust blocks to undisturbed soil. Excavation into trench wall may be necessary.

Form vertical surfaces of poured concrete thrust blocks except on bearing surface.

Encase all fittings in polyethylene wrap. Do not allow concrete to directly contact joints or fitting bolts.

| DI                                          | MINIMUM BEARING SURFACE (sf) |          |     |     |           |  |
|---------------------------------------------|------------------------------|----------|-----|-----|-----------|--|
| Dlameter of<br>Plpe, D<br>( <b>I</b> nches) |                              | Tees and |     |     |           |  |
|                                             | 1114°                        | 22½°     | 45° | 90° | Dead Ends |  |
| 4                                           | 1                            | 1        | 2   | 4   | 3         |  |
| 6                                           | 1                            | 2        | 4   | 8   | 6         |  |
| 8                                           | 2                            | 4        | 7   | 14  | 10        |  |
| 10                                          | 3                            | 6        | 11  | 21  | 15        |  |
| 12                                          | 4                            | 8        | 16  | 29  | 21        |  |
| 14                                          | 5                            | 11       | 21  | 39  | 28        |  |
| 16                                          | 7                            | 14       | 27  | 50  | 36        |  |
| 18                                          | 9                            | 17       | 34  | 63  | 45        |  |
| 20                                          | 11                           | 21       | 42  | 78  | 55        |  |
| 24                                          | 15                           | 31       | 60  | 111 | 78        |  |
| 30                                          | 24                           | 47       | 92  | 171 | 120       |  |
| 36                                          | 34                           | 67       | 132 | 244 | 173       |  |
|                                             |                              |          |     |     |           |  |

Minimum surface area based on water pressure of 150 psi and allowable soll pressure of 1,000 psf.



THRUST BLOCKS

# **Concrete Thrust Block - Bearing**

| Discontinuo                        | MINIMUM BEARING SURFACE (sf) |          |                 |     |           |  |
|------------------------------------|------------------------------|----------|-----------------|-----|-----------|--|
| Dlameter of<br>Plpe, D<br>(Inches) |                              | Tees and |                 |     |           |  |
|                                    | 11 <sup>1</sup> 0            | 22½°     | 45 <sup>°</sup> | 90° | Dead Ends |  |
| 4                                  | 1                            | 1        | 2               | 4   | 3         |  |
| 6                                  | 1                            | 2        | 4               | 8   | 6         |  |
| 8                                  | 2                            | 4        | 7               | 14  | 10        |  |
| 10                                 | 3                            | 6        | 11              | 21  | 15        |  |
| 12                                 | 4                            | 8        | 16              | 29  | 21        |  |
| 14                                 | 5                            | 11       | 21              | 39  | 28        |  |
| 16                                 | 7                            | 14       | 27              | 50  | 36        |  |
| 18                                 | 9                            | 17       | 34              | 63  | 45        |  |
| 20                                 | 11                           | 21       | 42              | 78  | 55        |  |
| 24                                 | 15                           | 31       | 60              | 111 | 78        |  |
| 30                                 | 24                           | 47       | 92              | 171 | 120       |  |
| 36                                 | 34                           | 67       | 132             | 244 | 173       |  |

| Minimum surface area based on water pressure of 150 psi | and |
|---------------------------------------------------------|-----|
| allowable soll pressure of 1,000 psf.                   |     |

| Soil       | Bearing Strength S <sub>b</sub> (lb./ft²) |
|------------|-------------------------------------------|
| Muck       | (10./10)                                  |
| IVIUCK     | 0                                         |
| Soft Clay  | 1,000                                     |
| Silt       | 1,500                                     |
| Sandy Silt | 3,000                                     |
| Sandy Silt | 4,000                                     |
| Sandy Clay | 6,000                                     |
| Hard Clay  | 9,000                                     |



### **Thrust Blocks Limitations**

- Undisturbed Soil?
- Contractor Skill?
- Confined Space?
- Future Connections?
- Other Utilities?
- Vertical Bends?
- Site Access?





# Flanged Joints

Transfer thrust to pipe

Rigid

Valves & Fittings

**Above Ground** 





### **Tie Rods or Restrain Harness**

Transfers thrust through rods to point of connection (Effective)

Labor Intensive

Expensive

Good for Retrofit

**Corrosion Concerns** 







### **Retainer Glands**

Transfers thrust from fitting to pipe

"MegaLugs" (set screw or wedge)

Widely Used & Effective

**Cost Effective** 

Lots of Screws (trench issues)

DIP & PVC & HPDE

☐ Use Right Product!





### Retainer Glands

50 Tons!





# **Restrained Joint Pipe**

Transfer thrust to pipe

Push on joint (no bolts)

Welded bead on male end w/ restraining gland

Specific design lengths

Fast & Easy Install

Can be Dissembled

No field "Fit"









### **Restrained Gaskets**

Transfer thrust to pipe

Push-on & Mechanical

Locking teeth gaskets

Field Installed

Can be difficult to remove









# **Restrained Joint - Coupled**

### Transfer thrust to coupled joint







# **Restrained Joint Pipe**

(Trademark Names)

### **US Pipe**

- ✓ TR Flex
- √ Field Lok
- ✓ Field Lok 350
- ✓ HD Lok

#### Griffin

- √ Snap Lok
- ✓ Mech Lok
- ✓ Bolt Lok

### **PVC Pipe**

- ✓ Certa Lock
- ✓ Bulldog

#### American

- √ Fastite
- √ Flex Ring
- ✓ Lock Ring
- √ Fast Grip
- ✓ Field Flex Ring
- ✓ MJ Coupled Joint

Pac States - Thrust Lock

Clow - Super Lock



# **Mechanical Joint**

**NOT** Restrained

Uses Bolts & Wedge







### Mechanical "Restrained" Joint

Restrained

Uses Bolts & Wedge

Works Nice with Fittings







### **Determine Length of Restraint**





# Fitting Types Supported by EBAA Software



### Soil Types





# Trench Type

#### Type 3



Pipe bedded in 4 inches minimum loose soil. Backfill lightly consolidated to top of the pipe.

#### Type 4



Pipe bedded in sand, gravel, or crushed stone to a depth of 1/8 pipe diameter, 4 inch minimum. Backfill compacted to top of pipe. (Approximately 80 percent Standard Proctor, AASHTO T-99)

#### Type 5



Pipe bedded in compacted granular material to the centerline of the pipe, 4 inches minimum under the pipe.
Compacted granular or select material to top of pipe.
(Approximately 90 percent Standard Proctor, AASHTO T-99)



# **Creek Crossing**





# **Concrete Thrust Blocks - Bad**



# **Concrete Thrust Blocks - Better**



# **SUDAS Details**





# **Best Solution**





### **Dead End Water Main**





### **Dead End Water Main - Thrust Block**





### **Dead End Water Main – Retrain Joints**





# Dead End Water Main – Thrust Block & Gland





### **SUDAS Detail**





SECTION B-B



# **Hydrant Thrust Restraint**





**Restraint Joint** 

# **Relocate Hydrant**





**Restraint Joint** 





















































































































#### **Engineering Tips**

Trenchless & Encased Pipe – Restrain Joint Pipe

River & Utility Crossings – Restrain Joint Pipe

Vertical Bends – Restrain Gland

Engineer Specs & Plans - Restraint Length Table

Observation in Field during Construction

